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A MULTIVARIATE SOLUTION OF THE e \
MULTIVARIATE RANKING AND SELECTION PROBLEM Ck
] 2
Edward J. Dudewicz and Vidya S. Taneja \ {
_ I
Department <f Statistics Department of Mathematics
The Ohio State University Western Illinois University
Columbus, Chio 43210 Macomb, Illinois 61455
ABSTRACT

The problem of selection of the best multivariate population
is given a new formulation which does not involve reducing the
populations to univariate quantities. This formulation's
solution is developed for known, and (using the Hetercscedastic
Method) also for unknown, variance-covariance matrices. Prefer-
ence reversals and arbitrary nonlinear preference functions are
explicitly allowed in this new theory.

1. INTRODUCTION

Let 7. be a multivariate normal population with p (> 1)
veriates, mean vector His and positive definite variance-
covariance matrix I, (i = 1,...,k); i.e., let m; be N, (s 19D
(1 =1,...,k). The problem of selecting that one of My yese sy
which is "best" in some precise sense is an important orie which

arises frequently in practice (e.g. see Chapter 15, pp. 341-394,
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of Gibbons, OQlkin, and Sobel (1977)). However, '"The whoie field
is as yet undevelcped and the reader [of Gibbons, Olkin, and
Sobel (1977), p. 390] is encouraged to regard this chapter
[their Chapter 15] as an introducticn to a wide area that will
see considerable development in the future as more meaningful
models are formulated.” This cwrrent paper deals with the devel
opment of such a model.

Most often, studies in this area have started by assuming
given a known function ¢ = #(u, 1) which is real-valued. One
then defines ¢ = 9y, Il),..., o = oy, tk), defines the
populaticn associated with the largest [sometimes, the smallest]
of ¢l,...,¢k as "best", and then proceeds to develop rarking and
selection procedures for the resulting univariate problem. For
example, one often then seseks to develop a procedure ¢ such that,
for a fixed P* (1/k < P* < 1) the probability of a correct
selaction satisfies
inf P(CS| ) = P

“p

where QP is some subset of the parameter space Q of Upse e st
tl""’fk' (let 9113 2o -2 by denote dp,.. by in rumerical
order. Then if "CS" means selectiocn of the populatior with k]
and Qp is a proper subset of @, we call Qp the preference zone
and say we are dealing with the indifference-zone setting
pioneered by Bechhofer (1954). While if "CS" means selection of
a subset S of [wl,...,nk} such triat S rmontains the populaticn
with ¢rj and §p 2 Q, we say we are dealing with the subset-
selection setting pioneered by Gupta (1956).) Various authors
have made various choices of the real-valued function ¢(u, ).
For example, ¢ = p' §™1 y (Alam and Rizvi (1965), Gupta (1966),
Srivastava and Taneia (1972)), ¢ = p' u (Srivastava and Taneja
(1872)), ¢ = ¢' u for a vector of constants ¢ {Krishned.zh and
Rizvi (1956)), the generalized variance (Gnanadesikan and Gupta

(19707, xegier (1976)), the miltiple
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correlation coefficient (Gupta and Panchapakesan (1969), Rizvi
3 and Solomon (1€73), Alsm, Rizvi and Solomon (1976)), the product
moment correlation for the biveriate (p = 2) case (Govindarajulu
! and Gore (1971)), and correlated variznces (Arvesen and McCabe
(1973)).

While in s+tudies to date, as detailed above, the multi-

A pen -

variate ranking and selection preoblem has been univariatized
(often for mathematical convenience rather than for compelling

b

reasons why one should regard the ¢(u, f) used as a natural

measure of population goodness; while w2 do not mean to say or

PNy

imply that the ¢ considered in the literature are always un-
reasonable in practice, we do believe there has lwen somewhat

more emphasis on them than their applicability warrants, due

LTI, PR A o D 3 TR S e A T
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largely to their mathematical tractability; for example, we

are not aware of a development of Mahalanobis distance showing

it to be & natural measure of distance), in the present paper we E

attempt to give a first multivariate colution of the multi-

E. -

variate rarking and selection problem. In particular, our E
treatment allows for such occuwrences as (letting "' denote "is '

better than" or "is preferreua to') |

EN AL

usy >172 ’»n3> n‘l (1.1

el

which are well-known in (e.g.) sports (tennis, golf, =tc.).
While (1.1) is an anomaly in previous treatments of multivariate
ranking and selection, i% is to be expected in truly multi-
variate problems (i.e., problews in which one cannot associate a
univariate measure of goodness, or number, ¢y, }), with a given

poepulation, but must rather compare different (u, I) pairs them-
selves in order to determine which is preferred), and it is not
anomalous in our treatment of multivariate ranking and selection.

For other approaches to "anomalies" such as (1.1) (besides the

———— e P ) ——— _— )

most common one, of denying its existence and blaming it on

"random variability") see Good and Tideman (1976), Fishburn
11977b), Young and levenglick (1978), and iee and Dudewicz {1980).
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Note, however, that the approach presented below is also
applicable to the situations (perhaps more comon than those
described in the above paragraph) where there 1s associated with

: each population M oa numerical "goodness" u, = ulps), 1 <1 <k,

=
=

such that m is preferred tc>n£iff uj > uy (1<3j,2<k). In
that situation, we are able to allow not simply linear functions

u(gi), but arbitrarily complex reality, including e.g. quadratic,

polynomial, erponential, and power series or even Fourier series
functions.

T

Wt

Due to repeated skepticism of the true existence of

AL S

situations like (1.1), and as a contrast with the situation in
the above paragraph, an example of (1.1) may be useful at this
point. Namely, in the Open Tennis Career Records as of 11/14/78
(compiled by Mr. Steve Flink of World Tennis, and graciously
provided by Mr. Ron Bookmar.) one can let TS Martina
Navratilova, m, = Virginia Ruzici, and Ty = Regina Marsikova.
Then T ® T (by 3-0), My > Ty (by 4-1), but my » m (by 2-1).
Any reasonable approach assigning u(gi) independent of examina-
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tion of uj's would, in this setting, come to erronecus conclu-
sions as to the relative merits of ™, and 5.

Briefly, in our new theory we let g(ul,...,uk) be an

ol ——— as ] o

Al AR 1

experimenter-specified function with range space {1, 2,...,k}
and such that

o4

, g(Hl""’Ek) =3 (1.2)
iff, given a choice among Hys-«esly, the experimenter would pre- >
fer by Below we give multivariate preference selection proce- A
fures‘”M“P which sample from each of TysevssTes estimate y; by
My (1 =1,...,k), and select
mglyse ol (1.3)
This is done first for the problem of selecting m, where
b= glyy,. .51 ) when Iy =...5 xk = 021 with ¢ known (Section
2), then when §; =...= I = I with { known (Section 3), next for

n
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the case of tl""’xk known but unequal (Section 4), and finally
(using the previous results as a base for The Heteroscedastic
Method) in the general case wher {,....}, are unknown and not
necessarily equal (Section 5). (While sections 2, 3, and 4
could be combined, we have kept their results separated for
several reasons. First, our new approach to multivariate selec-
tion is most easily understood in the context of Section 2,
where the fewest multivariate complexities are present. Second,
the setting of Section 3 with{ =...= } is that which The Hetero-
scedastic Methed builds its solution on. The probability
expressions developed in Section 4 are useful in Section 5.)
Extensions are then noted (Section 6).

We wish to emphasize that the nature of the preference
function g is not a chief point of interest in this paper;
however, our work holds for any and e+ -ry such function. The
specification and/or elicitation of s .ch functions is part of
the field of decision theory. Up to now it has dealt with only
relatively "simple" types of functions. (For scme illustrative
papers developing nonadditive (but still relatively simple)
utility theory, see Farquhar (1976) and Fishburm (1877a). For
some typical applications of this utility theory in practical
situations, see Giaugue and Peebles (1976) and Krischer (1976).
For some consideration of assessment of multiattribute cardinal
utility functions see Kirkwood (1876). For research papers and
a survey of the field of multiple criteria/objective decision
making, see respectively Starr and Zeleny (1877) and Hwang and
Masud (1979).) We plan to investigate such specifications as
(e.g.) polyncmial functions g. The present paper investigates
how one can do statistical inference with any such function
(even if not completely elicited or known), and this has been
hitherto unavailable.
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2. SELECTION OF THE BEST WHEN §, =...= [, = a%1, o% KIOWN

- —

let m; be Np ;s Ii) fori=1,...,k, and assume p > 1
i and tl =...= § = 0?I. EHere I is the pxp identity matrix and
and ¢? is assumed known. Let g(Hl"“’Ek) be an experimenter-
specified function with range space {1, 2,...,k}, where (1.2)

-ty

denotes the fact that among Byse--oly the experimenter prefers
By The natural selection procedure in this setting is to

\ observe n independent observations from eachﬂof MseesMes
estimate u; by the usual sample mean vector y; (1 < i < k), and

i select
‘ Tgllyseesiy) (2.1)
! Call this selection procedureé u o (o21).

Of course if the true means
= Gyaeoy) (2.2)
are such that g(g) = j while g(E + g) = 4 (g #3) for a matrix ¢

9f smell numbers, then the probability of correct selecticn of
VTVP(OzI)’ }

.

i P(CS| 21

E 8 ( IéMVP(O )) H (2.3)

will not be much larger than l/k. We will therefore show next

3 how to specify the sample size n per population so that, for a

H R R R TR

reasonable preference zone Qp(d*) (d* > 0) and a fixed P*
(1/k < P% < 1) procedure éMvg(ozI) satisfies

i 2 P
Q;?g*i(CS[VMVP(G ) > =, (2.4)
let 3
Pyo= s glw) =3}, 3= 1,00k (2.5) |

and note that Pl""’Pk are disjoint preference sets whose union

_ is RP. Define the distance between any two points a and b of
i kp ~ ~

3 R as the usual Fuclidean distance

pilivunsindt b A

o By Tt
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da, b) = ( I (a, - )OI/, (2.6)
NI 1t 7t
and denote the distance from u to the boundary OfF)g(u) by

dy (1) = infl{d(y, B): b ¢ P (2.8)

S(E)} .

We now set our probability requirement for any procedure ¢ as
P(CS|5) » P* whenever dB(u) > gk

(That is, we desire a selection procedure § which has probability
at least P* of choosing the true best populaticn (event "CS')

whenever the mean vector p is at least distance d* from mean

vectors where other populations are best. This same require-
ment is used in Sections 3 and 4 below also.) Whenever
dg (W) > d* we have

213y = p(d
P(CS |6y p(a° D) = P € Pygyy)

> PldGy, ) < dg(w)]

> Platy, @) < d¥] (2.9)
kK2 s 2 2

= P[ifl Qfl(uil - “ii) < (@]
k p .

- -y 2 :':22

= P[iil 2il(cuiQ - )/ 0// )" < nld*)%/o”]

= PLY < n(@)?/¢?] (2.9a)

where Y has a (central) chi-square distribution with kp degrees
of freedom. Hence we obtain

THEOREM 1. Selection procedure45Mvp(02I) satisfies probability
requirement (2.8) if the sample size n per population satisfies

FEPE PR
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i n> Xﬁp (%) o%/(a%)?

(2.10)

g where xip(?*) is the value a central chi-square random variable

. E with kp degrees of freedom fails to exceed with probability P¥.
The problem of how a practiticner will in practice choose

E P* and &% deserves some comment. First, choice of P* is

similar to choice of power in tests of hypotheses, and a

common desire is for P¥ = 0.95 or some similarly high value.

The choice of §% is similar to the specification in ANOVA of the

alternative (noncentrality parameter) at which one wishes the
power guarantee.

If the experimenter specifies the minimum
range between the largest of Hyago

uz,i,..., uk,i aI’ld the
‘ smallest of py,;, u

Zoireees Mg which he wishes to detect as
3 3
Ai > 0 units, then whenever

P

3 max(pl,i, “2,i""’ “k,i) - mln(ul’i, “2,i""’“k,i) 3_Ai (2.11)

we have (for any two possible u's, say a and b, which satisfy

~ -~

I NARGD
-

(2.11)) d(a, b) > 4,/2. Hence (since the 4; of interest may

~ ~

(ST

Lo vary frem compenent to component), one may choose &% =

min(Al,..., Ap)/Q. This Is similar to the ANOVA situation
i as considered by, e.g., Scheffé (1859), pp. 63-64.

l Regarding use of the usual sample mean vector K to

g TR e R gm‘,mu A "|\\j‘ialﬂlf';[\; BT R

estimate u, (1 <1 < kJ, it should be noted that this is perhaps
i not optimal. However, recent results of Draper and Van

; Nostrand (1977) suggest an optimal estimator will not be far
away from this estimator.

My Ay

Note that use of d(u, b) specifies the part of]Rkp where

~ -~

we control the P(CS); it does not univariatize our preferences.

Alsc, g as a function of the u

R

S B s e
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.'s alone is most usual when the yi's

relate to long-term yield (in decision theory); extension to
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functions of u:'s and §{;'s (when I,'s are unknown; when they
are known, the present results suffice) is a desirable area for

further study.

3.  SELECTION OF THE BEST WHEN f, =...= §, = I, { XNOWN

Let m; by Np (uys $i) for i =1,...,k, and assume p > 1
and }; =...= xk = §. Here { is the common pxp variance-
covariance matrix and is assumed positive-definite and known.
Let Ay <4, < .u. < A, denote the characteristic roots of 1.
Let chl"“’Ek) be an experimenter-specified function with
range space {l,...,k} as in Section 2, and consider using the
same selection procedure as in Section 2 (but now denote it by
nMVP(t) to explicitly take notice of the different variance-
covariance structure being assumed). Still taking our
probability reguirement as (2.8), we wish to determine the
common sample size n per population in such a way that (2.8) is
guaranteed. We will find the following result (Rao (1865),

p. 50) useful.
LEMMA 1. Let A be any symmetric pxp matrix, let
9, < 8, 5,..5_ep denote the characteristic roots of A, and let

X be any px1l vector. Then

Six'x < x' Ax <Oy . (3.1)
Now, choosing A = -l in Lemma 1 (so 6, is the smallest
characteristic root of t'l, i.e. l/Ap) we are in a position to

show that whenever dB(E) > d* we have
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P(CS| & yyp(h) = P( € Py

~

y)

-~

kK p -
2P0 I L (ug, - ug)? < @h?]

izl 2=1

R . 32

= P[ iil (g = ug)' oy = py) < (@°]

CBL S ol (- uot G- wo < B @]
=1 p Hi —Bi7 M5 -y —X;
ko - -1 12

> P[ iEl nlpy =)' T Gy - py) < n(d® /Ap]

= PIY < n(d*)Q/xp]

where Y has a (central chi-square distribution with kp degrees of
freedom. Hence we cbtain

THEOREM 2. Selection procedure €...(f) satisfies probability
requirement (2.8) if the sample size n per population is such
that

n 3_x§pCP*) Ap/(d*)z (3.2)

whe:e XiD(P*) is the value a central chi-square random variable
with kp aegrees of freedcm fails tc exceed with probability P*

and kp is the largest chavacteristic rcot of 1.

. SEILLECTION OF THE BEST WHEN tl""’xk KNOWN

Let m, be Np(gi, $;) for i = 1,...,k, and assume p > 1.
Here the k positive-definite pxp variance-covariance matrices
il""’xk are asswned known, but need not be equal. Let
g(El""’Ek) be an experimenter-specified function with range
space {1,...,k} as in Section 2, and consider using the same

selection procadure as in Section 2 (Lut now denote it by

Zyypllyse ool to explicitly take notice of the different

variance-covariance stirctures bzing assumed), with the

190
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modification that now ng observations are taken from
s (1 <1< k). Still taking our probability requirement as
(2.8), we wish to determine the sample sizes Ny5e el in such a
way that (2.8) is guaranteed.

Let A, ip denote the maximum characterlstlc root of t (i.e.,
the smallest characteristic root of i = 1,...,k. Using
results developed previously, it then follows that whenever

dB(g) e d* we have (letting n[l] = miﬂ(nlav- "nk) and }‘[k]p =

max(A

“ahyp?)
P(CS}GWP(Il,...,Ik))

kK . ~

= 4.1
k ~ ~ n
>PL L n (g = )" (o= pg) € o (@)1
;01 b Xip Hi T ORd 4y~ My “'A[K]p
k ~ -l A 2
t ! 3 .
> Lom Gy £r Gy - ) Snppg@d/ang]
K 2
= P02 Y (@t Ay

where Yl""’Yk are independent (central) chi-square random
variables with p degrees of freedom. Hence we obtain

THEOREM 3. Selection procedure GMVP(tl,...,xk) satisfies
probability requirement (2.8) if the sample sizes Nyy...,Ny are
such that

an 2
where xﬁp(P’) is the value a central chi-square random variable
with kp degrees of freedom fails to exceed with probability P*

nry] is the smallest of Nyseeeslys and A[k]p is the largest of
the characteristic roots of fy,...,I.
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Using Theorem 3, in the design problem one would of
course choose equal sample sizes Ny =Ny T...3ny equal to the
smallest integer > the right-hand side of (4.?). However, if
unequal sample sizes Nyseessly have already been taken, one can
nevertheless easily assess the smallest d¥ for which (2.8) is
satisfied by solving (4.2), as an equality, for d=.

As an exact expression for the first bounding expression
in (4.1), we have

K . ~
P(CSFMVP(tl,...,xk)) > PL 'gl (Bi =)ty -y < (d*)zj

. , (4.3)

= PLS) +...+ § < (@]

where Sl" .o ,Sk are independent random variables. This can be
usad to achieve (2.8) with a smaller total sample size
ny *+n, +...+ny in the design problem, via choosing njs...,ny
so that (4.3)'s right-hand side equals P* and n, + Ny, +...tny
is minimized. Similarly, in the situation where n IERREE 13" have
already been taken, the smallest d¥ for which (4.3) equals P*
(hence (2.8) is satisfied) will be smaller than that provided
by Theorem 3, hence yielding an improved (strengthened) proba-
bility requirement. However, since it is computationally dif-
ficult (i.e., expensive and time consuming) to evaluate (4.3),
we have emphasized a simpler result (albeit it requires a
larger sample size (in the design setting) and yields a larger
a@* for (2.8) (in the data analysis setting)) in Theorem 3.

Since (4.3) is of interest in Section %, we note that it
may be calculated using the following facts. Since we may
represent Sj as Sj = ¥j' ‘{j where ¥j~Np(O, $j/nj) (1 <3 <k,
it follows that

12
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1 -1
Ho(6) = PS, < t1 = 2m P2 f/m 22 [, fem T3 5/n 75
J ] - 33 1 i
yiy: & t ]
~J~]
1 4.4)
= am 2 [ e Wiy
2 2
o1 AjPWf/nj E_t
(where we utilized an orthogonal transformation), and (from
Pachares (195%)) that

(n.t/2)P’2 = <-nj~c/2>5n'P/2

3
H.(t)s ———r— E E
] ltj/n‘ll/z r(%p + s + 1) ,
) 1,+...4i =
1 p

s=0
5

(4.5)
NG SH JERE

5.  SELECTION OF THE BEST WHEN tl""’¢k UNKNOWN, UNEQUAL

let T ba Np

Here the k positive-definite pxp variance-covariance matrices

Uy $i) for 1 = 1,...,k, and assume p > 1.

¥l""’$k are assumed unknown, and need not be equal. Let
g(Bl""’Ek) be an experimenter-specified function with range
space {1,...,k} as in Section 2, and consider the same selection
problam as in Section 2. It follows from Dudewicz (1871) and
Dudewicz and Dalal (1975) that no single-stage procedureé for
this problem can satisfy a probability requirement like (2.8),
namely

P(CS[€) > P* whenever dp(y) > d*. (5.1)

13
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However, since (5.1) is the type of probability requirement one
would usually desire in practice, it is desirable to seek a &
satisfying (5.1" in a broader class than the class of single-
stage procedures.

Dudewicz and Bishop (1973) have given a riethod, called
The Heteroscedastic Method, which allows us to modify procedure
€yypt#) of Section 3 into a procedure €1 which solves the

present problem. Namely, let Erocedureé?HM be specified by a
sampling rule and a terminal decision rule as follows.

Sampling Rule for*PE%r Select z > 0, and integer ng > P,

and a pxp positive-definite matrix (arS). Take observatiocns

from each and every population Te (c = 1,...,k) as follows.

Take Ny initial observazions Xcl""’xcno where Xci =
(Xcli’ Xc2i""’XcL i 1,2,...,n0) and compute
L, o o
R.==- L X .p5S.:s= I (X_. K MNK.,-X.), (5.2)
¢l ng gy cif? “eij =1 clf el el el
S .. = 1 S sz i, 3= 1,2 p
eij 7 =17 “eij 3T TSP
Define the positive integer N, by
N = max(n., + p?, [27F g a:: S s2] + 1} (5.3)
e g7 P> 1,521 1j “cij ’ :
RE

where [q] denotes the largest integer less than q, and select
p (pxN C) matrices

3 ce. A
cr cr
11 1IN
Acr = . c (r = 1,2,.4.,p)
a ... a
Crpl CPPN

in such a way that:
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)

[ . e g b AL A K s gl GGG e 2 i i - . y
ket il it b i e e e s R R TS s S B
(NS I il R SR i p SN Rl

g
i
7

DR

T

1) a =...= a
eriy orino’

2) ACP Ng * €, where n, is the Nox1 vector (1,1,...,1)" and
€, is the pxl vector whose rih element is 1 and all other

elements are zero;

and

D AAL = 2" € (s51), where AL = (8, AL, e ALY €
denotes the direct product, and (b*J) denotes the inverse
of the matrix (bij), ryi = 1,2,...,D.

Next take NC - n, additional observations Xc,n0+l""’Xch and

compute
N
g 5o (5.1
= I I a_ X. (r=1,2,...,p). 5.4
er - iay g1 Fig R A
For m_ construct the p-dimensional vector Ré = (Rél""’iép)’

c=1,2,...,5k.
Terminal Decision Kule foré?HM. Take the same decision

as rule”yup (§) of Section 2 would when it took a sample size
n per population, had f/n = z(ar®), and observed

(El,...,gk) = (ii,...,?k) . (5.5
That is, select
ﬂg(Xl,...,Xk) . ©5.86)

Now from (a slight extension of) Theorem (2.20) of
Dudewicz and Bishop (1979) it follows that ¥ z >0 such that we have
THEOREM 4. Selection procedure %, satisfies probability
requirement (5.1). The constant z > 0 ingHM is to be chosen

so that
k-~ ~ 5
' B = P
PLIR - Ry o) < @)1= F (5.7)

While the distribution of (5.5) is independent of

(¥1"-"Ik)= it is very complicated (see equations (2.12),
(2.13) of Dudewicz and Bishop (1979)), hence calculation of

15




2z > 0 which satisfies (5.7) is not a simple matter. However,
for large n; (a design constant under the experimenter's control)
we may approximate (5.7)'s solution:

THEOREM 5. As ng >« the z > 0 wh%ch solves (5.7) approaches
the solution of (5.7) when ?i,...,?k) is replaced by (Yy,...,%)

y -

where Yl""’Yk are independent random variables and Y, is
Np(gi, zp(ars)). This soluticn may be calculated from (4.3)
and (4.5).

PROOF. This follows from the proof of Theorem (5.1) of
Dudewicz and Bishop (19792, where we find that the limiting (as

ng > «) distribution of (ii,...,ik) is the same as the
e : distribution of (Yl""’Yk)‘

6. EXTENSIONS

.E: While in this paper we have develcped a new approach for
'ﬁf one goal of the area known (see Gupta and Panchapakesan (1979),
- p- 7) as "ranking and selection", namely "selecticn of the
best," problems such as the selection of the best t (of k)
multivariate populations, as well as selection of a subset
containing the best multivariate population, can also be given
solutions uaing the methods of this paper. Details will

appear elsewhere.

ACKNOWLEDGMENTS

This research was supported by Office of Naval Research
Contract No. NO00O1u-78-~C-0543, and was initiated while
i V. 8. Taneja was on sabbatical leave at The Ohio State

University. Comments given uys by colleagues in presentations
at Cornell University, The University of California-Riverside,

V%( Tilburg University, The University of Nebraska-Lincoln, the

]

\éfg Winter Simulation Conference, The London School of Economics

; and Political Science, The Institute of Mathematical Statistics
1979 Joint Central and Lasterm Regional Meeting, The Ohio State
University, and Western Illinois University, and by the

i i R

=TT




TR T M 8 A e TR B e

referees, are acknowledged with thanks.

D &

BIBLIOGRAPHY

Alam, ¥. and Rizvi, M. H. (1965). Selecticn from multivariate
normal pcpulations. Ann. Inst. Statist. Math., 18,

[ T

;mmwm%mmwmmwmmwmmwmwﬂmmﬁm;i

procedure for ranking means of normal populations with
known variances. Arn. Math, Statist., 25, 16-39.

YN,

307-318. :

3 5
B v Alam, K., Rizvi, M. H. and Solomon, H. (1976). Selection of the z
= largest multiple correlation coefficient: Exact sample g
B size case. Annals of Statistics, 4, 614-620. %
fj Arvesen, J. N. and McCabe, G. P. (1975). Subset selection 3
?! problems for variances with application to regression 5
il analysis. J. Amer. Statist. Asscc., 70, 166-170, o
= B
5! Becchcfer, R. E. (1954). A single sample multiple decision §
%

B

Chatterjee, S. K. {1959). On an extension of Stein's two-
sample procedure to the multi-normal problem. Calcutta
tatistical Associaticn Bulletin, 8, 121-1L8.

m———

-1 Jraper, N. R. and Van Nostrand, R. C. (1977). Ridge regression:
- Is it worthwile? Technical Report No. 501, Department of
Statistics, The University of Wisconsin, Madison,
Wisconsin.

2 -

Dudewicz, E. J. (1871). Nonexistence of a si gle-sample
selection procedure whose P(C3) is indc endent of the
variances. South African Statistical (.1 =1, 5, 37-39.

IEESEICEE T AL

Dudewicz, E. J. and Bishop, T. A. (1579). The heteroscedastic
method. Optimizing Methods in Statistics (ed.
J. S. Rustagil), I83=703, Academic PresT, New York.

Dudewicz, E. J. and Dalal, S. R. (1975). Allocation of
observations in ranking and selection ..ith nnlnown
variances. Sankhya, 37B, 28-78.

R [ [

Farquhar, P. H. (1976). Pyramid and semicube decompositions of
multiattribute utility functions. Operations Research,
24, 256-271.

.

Fishburn, P. C. (1877a). Multicriteria choice functions based
on binary relations. Operations Research, 25, 939-1012.

17

TR
S




Fishburn, P. C. (1977b). Condorcet social choice functions.
SIAM J. Appl. Math., 32, 469-489,

Giauque, W. C. and Pzebles, T. C. (1976). Application of
multidimensional utility thecry in determining optimal
test-treatment strategies for streptococcal. sore throat
and rheumatic fever. Operations Research, 24, 933-348.

Gibbons, J. D., 0lkin, I. and Sobel, M. (13977). Selecting and
Ordering Populations: A New Statistical Methodology,
John Wiley & Sons, Inc., New York.

Gnanadesikan, M. and Gupta, S. S. (13970). A selection procedure
for miltivariate normal distributicons in terms of the
genealized variances. Technometrics, 12, 103-117.

Good, I. J. and Tideman, [. N. (1976). From individvzal to
collective ondering through multidimensional attribute
space.. Proe. R. Soec. lend. A, 347, 371-385.

Govindaraiulu, Z. ard Sore, A. P. (1971). Selection procedures
with respect to measures of association. Statistical
Decisior. Theory and Related Topics (ed. S. S. Gupta and
J. Yackel), 313-3u45, Academic Press, New Yool

GQupta, S. o. (1856). On a decision rule for a problem in
ranking means. Mimeo. Ser. No. 150, Inst. of Statist.,
Univ. of North Carolina, Chapel Hill, N. C.

Gupta, S. S. (1966). On some selection and rankirg procedures
for multivariate normal populations using distance
functions. Multivariate Analysis (ed. P. R. Krishnaiah),
457-475, Academic Press, New York.

3upta, S. S. and Panchapakesan, S. (196%). Some selection and
ranking procedures for multivariate normel populations.
Multivariate Andiysis II (ed. P. R. Krishnaiah), 475-505,
Academlic Press, New York.

Gupta, 5. S. and Panchapakesar:, S. (1979). Multiple Decision
Procedures: Theory and Methodology of Selecting and
RKanking Populations, John Wiley & sSons, Inc., New York.

18

4.' i




Sl

R g L S

Gupta, S. S. and Studden, W. J. (1970). On some selection and
ranking procedures with applications to multivariate
populations. Essays in Probability and Statistics
(R. C. Boseet al, ed.)327-338, Univ. of North Carolina
Press, Chapel Hill, N. C.

Hwang, C.-L. and Masud, A. S. M. (1979). Multiple Objective
Decision Making - Methods and Applications, A State-
of-the-Art Survey, Springer-Verlag Berlin Heidelberg,
Germany .

Kirlwood, C. W. (1976). Parametrically dependent preferences
for multiattributed consequences. Operations Research,
24, 92-103.

Krischer, J. P. (1976). Utility structure cf a medical
decision-making problem. Operations Research, 24,
951-971.

Krishnaizh, P. R. and Rizvi, M. H. (1966). Some procedures for
selection of multivariate normal populations better than
a control. Multivariate Analysis @d. P, R. Krishnaiah)
4u7-4390, Academic Press, New York.

lee, Y. J. and Dudewicz, E. J. (1980). Awardee selection
procedures, with special reference to the Frank Wilcoxon
and Jack Youden prizes. Technometrics, 22, 121-12u.

Pachares, J. (1955). Note on the distributicn of a definite
quadratic form. Annals of Mathematical Statistics,
26, 128-131.

Ramberg, J. S. (1977). Selecting the best predictor variate.
Commn. Statist., AS (11), 1133-1147.

Rao, C. R. (1965). Linear Statistical Inference and Its
Applications, John Wiley & Sons, Inc., Wew IOCK.

Regier, M. H. (1876). Simplified selection procedures for
multivariate normal populations. Technometrics, 18,
L483-489.

Rizvi, M. H. and Solomon, H. (13973). Selection of largest
multiple correlation coefficient: asymptotic case.
J. Amer. Statist. Assoc., 68, 184-188. Corrigendum,
09, ZBE,

Scheffe, H. (1859). The Analysis of Variance, John Wiley & Sons,
Inc., New York.

19

gty

e i i B i




Srivastava, M. S. and Taneja, V. S. (1972). Some sequential
procedures for ranking multivariate normal populations.
! Ann. Inst. Statist. Math., 24, 455-u46Y4,

Srivastava, M. S. and Taneja, V. S. (1974). Scme sequential
procedures for a multivariate slippage problem.
Metron, 31, 1-10.
- Starr, M. K. and Zeleny, M. (Editors) (1877). Multiple Criteria
Decision Making, North-Holland Publishing Company,
Amsterdam.

w o

Young, H. P. and Levenglick, A. (13978). A consistent
extension of Condorcet's election principle.
SIAM J. Appl. Math., 35, 285-300.




